

Cost-effectiveness of Screening and Management Strategies for Familial Hypercholesterolemia in the United States: an Update

Zawadzki NK¹, Hay JW¹, Ahmed CD², Myers KD², Gidding SS²

¹Department of Pharmaceutical and Health Economics, School of Pharmacy, University of Southern California (USC), Los Angeles, CA, USA, ²The FH Foundation, Pasadena, CA, USA

OBJECTIVES

- Is genetic cascade screening for heterozygous FH cost-effective in the US compared with routine lipid cascade screening?
- Is the addition of PCSK9i in \succ combination with statin therapy for high cholesterol cost-effective in the US heterozygous FH population?

This study aimed to provide an update of a previous model estimating the cost-effectiveness of genetic screening and lipid-based screening with intensive therapy (statin + PCSK9i therapy) compared to lipid-based screening (statin therapy alone) in the US.

METHODS

This analysis is based on a previous model,⁷ adjusted for changes in the treatment cost and effect of statin + PCSK9i therapy and the cost of genetic screening.

Perspective: US societal

Transition Probabilities (Table 1)

Statin and PCSK9i efficacy

BACKGROUND

- Heterozygous familial hypercholesterolemia (FH) is a genetic disorder that affects approximately 1 in 250 individuals in Western populations (Figure 1).¹
- In individuals with FH, mutations in the genes responsible for plasma low-density lipoprotein cholesterol (LDL-C) clearance cause abnormal accumulation of cholesterol in the blood and premature cardiovascular disease (CVD).¹⁻³
- Treatments have been shown to be highly effective, but **fewer than 20%** of US FH cases are diagnosed and fewer than 50% of US adults receive treatment for high cholesterol.¹
- Under-diagnosis is the largest barrier to FH care as clinical manifestation is most often characterized by initial acute myocardial infarction (AMI) or stroke (Figure 2, Figure 4).¹
- Options for diagnosis are (1) clinical criteria, based on a combination of high cholesterol, presence of tendon xanthomata in the patient or first-degree relative,

Figure 1: Estimated Prevalence Rate and Undiagnosed Rate for FH

RESULTS (continued)

- ICER results were robust in oneway sensitivity analysis
- Results were most sensitive to adherence parameters, utility pre-CVD, and statin + PCSK9i effect on LDL-C.

Incremental Cost-Effectiveness Ratio (\$)*

	(-20% base case)	(+20% base	case)
Adherence 1-9 years	\$139,841	\$60,986	
Adherence 10+ years	\$52,294	\$103,710	
Utility Pre-CVD	\$106,427	\$47,857	
Statin + PSCK9i effect on LDL-C **	\$63,769	\$68,939	
Hazard ratio death after CVD event	\$68,499	\$64,086	
DNA test sensitivity	\$69,312	\$63,093	
Ongoing AMI costs	\$66,336	\$65,713	
Ongoing stroke costs	\$66,206	\$65,843	
Genetic screen cost	\$49,385	\$82,664	
1st year stroke costs	\$66,061	\$65,988	
Ongoing angina costs	\$66,257	\$65,792	
1st year AMI costs	\$66,083	\$65,966	
Statin + PCSK9i the rapy cost	\$61,413	\$70,635	
1st year angina costs	\$66,040	\$66,008	
Lipid test sensitivity	\$33,473	\$90,815	
Utility CVD Event/Stroke	\$57,003	\$67,028	
Statin + PSCK9i effect on HDL-C **	\$76,674	\$62,821	

parameters¹⁰⁻¹⁴ and the proportion diagnosed based on the decision tree were used to adjust cholesterol levels from baseline and calculate risk of major events and death.

- Adjusted cholesterol levels and Framingham Heart Study¹⁵⁻¹⁶ risk equations were used to generate the 10-year probability of CVD and the 10year probability of CVD-related death by male age groups, in 10- year intervals, converted into 1-year health state transition probabilities using the DEALE method.
- Transition probabilities for death after a CVD event were estimated by multiplying probability of CVD-related death with the hazard ratio of death after an event, assumed to be 5.00 based on US studies that provide long-term survival prognosis 5 to 10 years after AMI or stroke in the Framingham Heart Study population.¹⁵⁻¹⁶

Table 1. Transition Probability Adjustment Base Case **Parameters**

Parameter	Effect, Point Estimate (Range)	
Hazard ratio of death after AMI $^{15-16}$	5.0	
Odds ratio of adherence 17	1.38	
Effect of Statin Therapy 10-11		
Decrease in LDL-C ^a	38.0% (35.7–40.3)	
Increase in HDL-C ^b	5.50% (2.75-8.25)	
Additional Effect of PCSK9i ²¹		
Decrease in LDL-C ^a	55.0% (60.2–51.3)	
Increase in HDL-C ^b	9.0% (7.5–11.4)	
Baseline Adherence to Statin Therapy ¹³⁻¹⁴		
Percent adherent 1-9 years of therapy	56.0% (12.0–94.0)	
Percent adherent 10+ years of therapy	42.0% (0–90.0)	

a Low-density lipoprotein cholesterol b High-density lipoprotein cholesterol

Selected Input Costs (Table 2): Costs were evaluated and reported from a US societal perspective and adjusted to 2013 US dollars using the CPI for Medical Care, when needed.

and a family history of premature CHD or high cholesterol; or (2) genetic screening through a DNA test to identify the causative mutation.¹

- An index diagnosis of FH followed by family (cascade) screening of relatives is considered the most efficient method of identifying additional cases given the autosomal-dominant inheritance of FH.¹
- Many European countries have established guidelines for cascade screening that often involve genetic testing, but no formal guidelines exist in the US.³⁻⁷
- Previous studies found that genetic screening for FH with subsequent statin therapy is not cost-effective in the US.³
- In 2015, proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) were newly approved in the US for treatment in FH individuals,⁸ and since 2015, the cost of genetic testing has decreased by more than 10-fold.⁹

Figure 5: Diagram of FH Inheritance

Markov model

to estimate QALYs ^a

& costs, per arm

MODELS

Decision tree 1,000 adult males for screening in high risk initial disease detection cohort, per arm probabilities ^a Quality adjusted life-years

^b Incremental cost-effectiveness ratio

Initial cohort: 1000 Caucasian male adults with a family history of FH and high-risk serum cholesterol levels.

A decision tree was used to estimate disease detection with the three screening strategies (Figure 6).

A Markov model was used to model disease progression until death, quality-adjusted life years (QALYs) and costs from a US societal perspective (Figure 7).

Table 4. Base Case Patient Cohort*	(n = 1000)
Median Age	43.1
HDL cholesterol ^a	46 mg/dL
LDL cholesterol ^b	224 mg/dL

ICER ^b **results**

in costs/QALY

between arms

* Adapted from the study population for the UK's Simon Broome Register of Familial Hyperlipidaemia a High-density lipoproteir b Low-density lipoprotein

Base case ICER for genetic screening & statin + PCSK9i therapy versus lipid screening & statin therapy = \$66,024; upper bound = +20% base case; lower bound = -20% base case. ** Statin + PCSK9i effect parameters varied by -7.5% and +7.5% base case. Note: is not clear that lowering LDL-C more than 93% (base case) improves CVD risk. 27 a Cardiovascular disease b High-density lipoprotein cholesterol c Low-density lipoprotein cholesterol

Figure 9: One-way Sensitivity Analysis Results

LIMITATIONS

- This study is limited mainly by the lack of data available on diagnosis and treatment of the US FH patient population.
- The limited risks available in published literature at the time of this study allowed only for a greatly simplified Markov model of CVD progression, which does not include separate states for secondary events and treatment.
- Additionally, this study examines disease progression in a male population only, and may not be directly generalizable to the entire FH population in the US.
- Further, there exist substantial gaps in knowledge regarding genetic screening and disease management for FH patients in the US. As a result, European data was used to inform the genetic cascade screening program modeled in this study.

CONCLUSIONS

- Because of falling screening costs, genetic cascade screening for FH is now generally cost-effective in the US.
- Aggressive LDL lowering with statin + PCSK9i therapy is a costeffective way to improve health outcomes for FH patients.
- However, much additional information is needed in order to suggest further policy implications,

Table 2. Select Input Costs			
SCREENING COSTS			
Gene sequence of index case ⁹	\$250		
DNA mutation test for FH ⁹	\$250		
Direct LDL-C test 18	\$17		
TREATMENT AND ADHERENCE COSTS 19-21			
Annual statin therapy	\$42		
Annual statin adverse events	\$186		
Annual PCSK-9 therapy ²²	\$1,500		
CVD AND STROKE COSTS 23-24			
1 st year cost of AMI ^a	\$23,123		
Annual cost of AMI (ongoing)	\$3,703		
1 st year cost of angina	\$8,139		
Annual cost of angina (ongoing)	\$3,536		
1 st year cost of stroke	\$16,044		
Annual cost of stroke (ongoing)	\$2,392		
a Acute myocardial infarction			

Input Health-State Utilities (Table 3): Utilities for each state in the Markov model were estimated from studies using a US societal perspective, with reference to perfect health utility of 1 and death state utility of 0.

Table 3. Input Health-State Utilities			
Asymptomatic CVD ^{a 25}	0.996		
CVD Event/Stroke ²⁶	0.704		
Death	0		
a Cardiovascular disease			

CONTACT

Email: zawadzki@usc.edu Phone: (650) 319-5898

RESULTS

- Genetic screening with statin therapy is costeffective at a US willingnessto-pay threshold of \$150,000 per QALY (Table 5).
- Although lipid screening with subsequent statin + PCSK9i therapy incurs more lifetime costs than lipid screening with statin therapy alone or genetic screening with statin therapy in FH, it **provides the most** incremental benefits within the willingness-to-pay threshold (Figure 8).

Figure 8: Net Monetary Benefits of Genetic Screening

Table 5. Markov Model Results

	Total Costs	Total QALYs	Incremental Cost	Incremental QALYs	ICER (\$/QALY)
Lipid screening & statin therapy (reference)	\$14,750	18.903			
Genetic screening & statin + PCSK9i therapy versus reference	\$14,984	18.907	\$234	0.004	\$66,024
Lipid screening & statin + PCSK9i therapy versus genetic screening	\$25,700	19.658	\$10,717	0.751	\$14,268

including

- More thorough FH registries in the US.
- Large sample genetic testing for FH in the US.
- Long term, randomized studies of adherence and outcomes.
- Because FH patients face a lifetime of elevated LDL-C levels, efforts and resources can be directed towards increased screening and improved, sustained adherence to statin, PCSK9i and other lipid-lowering treatments to help improve health outcomes for these individuals.

REFERENCES

DISCLOSURES

Authors have no conflicts to disclose.